
 
NOVA  
University of Newcastle Research Online 

nova.newcastle.edu.au 
 

 
Chica, Manuel; Bautista, Joaquín; de Armas, Jesica; " Benefits of robust multiobjective 
optimization for flexible automotive assembly line balancing.” Published in Flexible 
Services and Manufacturing Journal, Vol. 31, Issue 1, p. 75-103 (2019). 

 
Available from: http://dx.doi.org/10.1007/s10696-018-9309-y 
 

 
 

 
 
This is a post-peer-review, pre-copyedit version of an article published in Flexible Services and 
Manufacturing Journal. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/s10696-018-9309-y 
 
 
 

Accessed from: http://hdl.handle.net/1959.13/1411718 
 
 
 
 
 
 
 
 
 
 
 

http://dx.doi.org/10.1007/s10696-018-9309-y
http://hdl.handle.net/1959.13/1411718


Flexible Services and Manufacturing Journal manuscript No.
(will be inserted by the editor)

Benefits of robust multiobjective optimization for

flexible automotive assembly line balancing

the date of receipt and acceptance should be inserted later

Abstract Assuming certain and homogeneous demand is not realistic. De-
mand changes are frequent and decision makers must take into account the
risk of not considering this uncertainty. The automotive industry is an exam-
ple of these changing conditions. Manufacturers must adapt their decisions
when balancing the assembly line and consider different flexible solutions to
the problem. Our proposal is using robust multiobjective optimization and
simulation techniques to provide managers with a set of robust and equally-
preferred solutions for assembly line balancing. We study a Nissan case where
the demand of each product family is uncertain. The problem is addressed
by considering a robust multiobjective model for assembly line balancing and
simulation techniques to generate realistic demand sets with a high number of
production plans. After the selection of six different assembly line configura-
tions, we study the implications of robustness metrics based on workstations’
overload. We show that the adverse managerial effects of not having flexible
line configuration when demand changes are alleviated. For the real Nissan
automotive case, our analysis and conclusions show the managerial and in-
dustrial benefits of using robust assembly lines. We also encourage decision
makers to use robust multiobjective optimization methods for selecting the
most flexible decisions.

Keywords Flexibility · Assembly Line Balancing · Uncertain Demand ·
Robust Optimization

1 Introduction

Most advanced manufacturing industries normally use the same assembly line
for assembling different product types. There is a product-oriented produc-
tion system, able to assemble similar products but with different character-
istics. One example is the automotive industry, where major auto assemblers
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such as Ford, General Motors, and Chrysler have begun overhauling some
of their previously specialized car-assembly plants into “flexible factories” to
several models on the same production line (Eynan and Dong 2012, Moreno
and Terwiesch 2015). The proliferation of product varieties is mandated by
competition and customer demands and is clearly evident in the automotive
industry (AlGeddawy and ElMaraghy 2010). As also shown by AlGeddawy
and ElMaraghy (2010), this is well demonstrated in the example of car engine
accessories where families of products that exhibit wide variety exist; yet they
have many common functions, components, and assembly processes.

The assembly of these different products is based on similar processing
tasks with common features but require, for each product type, different com-
ponents, specific work and tools. But within this industrial context, dramatic
changes in the demand of the products’ type could drive to unstable assem-
bly line balancing and to the need of constant re-balancing operations (Chica
et al 2016). These production changes might be managed by building flexibility
and reconfigurability a priori into the manufacturing system as a posteriori

adaptation corresponds to the reaction of an already existing manufacturing
system to changes in the product (ElMaraghy and AlGeddawy 2012). In gen-
eral, flexibility has to be an important asset to manufacturing firms (Moreno
and Terwiesch 2015) and specifically, setting a flexible and proper assembly
line configuration is increasing in importance nowadays.

The tasks of an assembly line divide the manufacturing of a production
item. A well-known and difficult problem in operations research is to deter-
mine how these tasks can be assigned to the stations fulfilling certain restric-
tions, and it is called assembly line balancing (ALB) (Boysen et al 2007, 2008,
Battäıa and Dolgui 2013). ALB problems optimally partition tasks to stations
with respect to some objective (such as the cycle time of the line) in such a
way that all the precedence constraints are satisfied. Within the set of available
ALB problems, one realistic variant is the time and space assembly line bal-
ancing problem (TSALBP) (Bautista and Pereira 2007). TSALBP considers
the linear space of tasks and line’s workstations and makes use of a multiob-
jective problem definition (Deb et al 2002, Coello et al 2007) to search for a
set of optimal solutions to three optimization criteria: m (number of stations),
c (cycle time), and A (linear area of the stations).

However, the majority of the existing ALB models assume a fixed balance
of the assembly lines when producing mixed products. This assumption is not
appropriate, especially when managing high-variant mixed-model assembly
lines (Dörmer et al 2015). In the automotive industry and specifically, when
assembling engines, the variety of the final products has been increased in
the last decades (Garcia-Sabater et al 2012). These product demands are not
usually fixed and certain, and when the assembly line produces mixed products
in a given sequence (Boysen et al 2010), the model cannot only consider the
operation time of the tasks as the averaged times of the different products and
their demand. If the demand changes, the operation time also changes and
the line configuration may need a re-balancing. This re-balancing may cause
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production losses because those workers assigned to workstations will have to
comply with new tasks and increase their learning curve to work in the line.

New optimization models such as those considering robust solutions (Roy
2010, Beyer and Sendhoff 2007) have emerged, given their possible benefits to
managerial decisions in the production system of the plant. In this work, we
will focus on one of the most recent multiobjective robust ALB models (the
r-TSALBP (Chica et al 2016)) to study a set of ALB solutions with differ-
ent flexibility characteristics to a real automotive case study. The r-TSALBP
integrates the concepts of robust optimization and multiobjective optimiza-
tion (Coello et al 2007) to find the most efficient and flexible assembly line
configurations also having a low impact on the management of the plant. The
model links robustness with the flexibility of an assembly line configuration
when demand changes according to a set of real production plans. The model
identifies and measures how robust a line configuration is for a set of produc-
tion plans according to both operation time and linear area.

We apply the methods to a real engine assembly line of the Nissan auto-
motive industrial plant in Barcelona (Spain). First, we solve the assembly line
balancing problem of the Nissan case study by using two evolutionary mul-
tiobjective optimization (EMO) algorithms (Talbi 2009, Coello et al 2007),
with and without robustness mechanisms. The first algorithm is the stan-
dard non-robust NSGA-II (Deb et al 2002). The second one is the adaptive
IDEA (Chica et al 2016) which is applied to the robust r-TSALBP model. The
adaptive IDEA is an extension of the original IDEA version (Singh et al 2008)
to search for robust solutions by making IDEA adaptive. This behavior is
achieved by dividing the population of the algorithm in robust and non-robust
sub-populations of solutions and by adapting the size of both populations
depending on the robustness of the Pareto archive every generation.

Within the robust assembly line framework we propose and study three
non-robustness metrics of the assembly line configurations, gc1, g

c
2, and gc3,

with respect to the set of production plans. These temporal non-robustness
functions, based on overloaded stations by plans, provide a way to identify the
most critical workstations in terms of flexibility for changing production plans.
The results of the case study are evaluated in terms of the managerial and
industrial advantages for the company and how not using a robust approach
can generate difficulties in several departments of the organization.

Additionally, we include a novel methodology in the robust framework by
making use of a simulation technique to better evaluate the risk of deploying
the assembly line configurations under changing conditions. To the best of our
knowledge, this is the first attempt of using simulation techniques to extend
the evaluation of the robustness of assembly line configurations. In general,
simulation modeling is the best approach for dealing with complex systems
under uncertainty (Borshchev and Filippov 2004) because a well-validated
simulation model can capture the system variation in a realistic way while
still producing results that can be made as accurate as desired and supporting
the existing complexity. The hybridization of simulation techniques with the
EMO algorithms will provide automotive decision makers with a flexible and
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rich tool when dealing with optimization problems in uncertain domains (Juan
et al 2016).

During the experimentation of the study we start by selecting three pairs of
Pareto-optimal assembly line configurations with 18, 21, and 23 workstations.
These configurations are non-dominated solutions obtained by the two EMO
algorithms with and without a specific robust search. They are evaluated for
the Nissan case study by the non-robustness metrics and, by using the Monte
Carlo simulation approach, the set of demand scenarios is increased up to 1,000
different demand plans. The use of the latter simulation method allows us to
better measure the reliability of the robustness of the configuration solutions.
We compare the values of the robustness metrics for the non-robust and ro-
bust approaches and flexibility of them when using simulation as part of the
risk management process. Finally, the managerial implications and effects of
implementing the evaluated line configuration are discussed.

The structure of this paper is organized in five main parts starting from this
introduction. Section 2 presents some background information and our research
methodology (i.e., multiobjective robust optimization, the use of simulation for
uncertainty, and the r-TSALBP model including the temporal non-robustness
functions). Then, Section 3 explains the case study used in our work and
the methods’ details. Section 4 describes the experimental results. Finally,
Section 5 discusses the implications and benefits of our proposal for making
managerial decisions and presents some concluding remarks.

2 Background and research methodology

We first describe the mathematical ALB problem (Section 2.1). Later, multi-
objective and robust optimization are described in Sections 2.2 and 2.3, respec-
tively. How simulation can be used as a tool in optimization under uncertainty
is presented in Section 2.4. Finally, a multiobjective model for ALB that con-
siders uncertainty in its formulation is described in Section 2.5.

2.1 Assembly line balancing description

Mathematically, a general ALB problem is defined as follows. We divide the
manufacturing of a production item into a set J of n tasks. ALB problems
focuses on grouping the latter set of tasks J in workstations by an efficient
and coherent way (Baybars 1986, Scholl and Becker 2006, Dolgui and Ko-
valev 2012). Each station k = {1, 2, ...,m} is assigned to a subset of tasks Sk

(Sk ⊆ J) which is called the workload of the station. Each task j requires an
operation time for its execution tj > 0 that is determined as a function of the
manufacturing technologies and the employed resources. Each station k has a
workload time t(Sk) which is equal to the sum of the processing times of its
assigned tasks (workload of the station) and cannot exceed the cycle time of
the line, c.
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Each task j is assigned to a single station k and has a set of direct “preced-
ing tasks” Pj which must be accomplished before j is started. These constraints
are normally represented by means of an acyclic precedence graph. The ver-
texes of the graph represent the tasks where a directed arc (i, j) indicates that,
on the production line, task i must finish before the start of task j.

Recently and because of the need of introducing space constraints in ALB,
researchers started to also consider the linear area aj associated to each task
j (Bautista and Pereira 2007). Then, each station k has also an available
station linear area a(Sk) which is equal to the maximum of the sum of linear
areas required by the tasks assigned to all the stations: A = maxk=1,2,...,mAk,
where Ak is given by the sum of the linear area of all the assigned tasks to
station k. This new family of models is called TSALBP (Bautista and Pereira
2007) and introduces additional space features to ALB.

TSALBP states that, for a set of n tasks, restricted by the precedence
graph, and with their temporal tj and spatial aj attributes (1 ≤ j ≤ n), each
task must be assigned to a single station in a way that: (i) every precedence
constraint is satisfied, (ii) no station workload time (t(Sk)) is greater than
the cycle time (c), and (iii) linear area required by any station (a(Sk)) is not
greater than the available linear area per station (A).

2.2 Multiobjective optimization

Multiobjective optimization considers optimization problems involving more
than one objective function to be optimized simultaneously (Deb et al 2002,
Coello et al 2007). Multiobjective optimization problems arise when optimal
decisions need to be taken in the presence of trade-offs between two or more
conflicting objectives. This is the case of ALB and specifically, the TSALBP,
where some models consider the need of optimizing more than one objective
at the same time. For instance, the majority of the TSALBP variants consider
the joint optimization of the cycle time c, linear area of stations A, and number
of stations m (Bautista and Pereira 2007).

Typically in multiobjective optimization, there is not a single solution that
simultaneously optimizes each objective. Instead, there is a set of Pareto op-
timal solutions. A solution is called non-dominated or Pareto optimal if none
of the objective functions can be improved in value without degrading one or
more of the other objective values. The set of Pareto optimal solutions is often
called the Pareto front.

Evolutionary multiobjective optimization (EMO) algorithms are one of the
most popular approaches to generate Pareto optimal solutions to a multiob-
jective optimization problem (Deb et al 2002, Coello et al 2007, Talbi 2009).
Currently, most of the EMO algorithms apply Pareto-based ranking schemes.
The main advantage of these algorithms for solving multicriteria problems is
the fact that they typically generate sets of various non-dominated solutions,
allowing the computation of an approximation of the entire Pareto front. Some
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of the most popular EMO algorithms in the literature are NSGA-II (Deb et al
2002) and MOEA-D (Zhang and Li 2007).

2.3 Robust optimization

The traditional formulation of optimization problems, both single and multi-
objective, is inherently static and deterministic. However, reality is dynamic
and uncertain: environmental parameters fluctuate, materials wear down, pro-
cessing or transportation times vary, clients change their demands, etc (Beyer
and Sendhoff 2007). When uncertainty is not added to the optimization pro-
cess, the optimized solutions for those systems are unstable and sensitive to
small changes. A way to tackle with this uncertainty in optimization is by
providing solutions to the optimization problem with a high degree of robust-
ness. This robustness indicates how the solutions to the optimization problem
remain relatively unchanged when exposed to uncertain conditions (Beyer and
Sendhoff 2007, Ferreira et al 2008).

With respect to ALB, one of the most common ways of finding robust
solutions is to search for the solutions that perform well across all possible
scenarios (Battäıa and Dolgui 2013). Using this approach Xu and Xiao (2011)
dealt with the mixed ALB problem variant and proposed a lexicographic-
order on the α-worst case scenario. The majority of the approaches existing
in the literature for robust ALB are based on considering uncertain tasks
attributes by defining interval values or by setting different scenarios. The
most used robust criteria rely on the worst case by using traditional min-max
or variations of it (Dolgui and Kovalev 2012, Simaria et al 2009, Xu and Xiao
2011, Saif et al 2014).

Dolgui and Kovalev (2012) proposed an ALB model and a dynamic pro-
gramming method to minimize the cycle time by following a worst scenario
approach; while Li and Gao (2014) characterized unstable demand in man-
ual mixed-model assembly lines by several representative scenarios. Another
well-known uncertainty focus in ALB is the time: task times have uncertain
values by defining intervals or known distributions. For instance, Gurevsky
et al (2012) dealt with the SALBP-E when having task times within intervals
and proposed a way to find a compromise between the objective function min-
imization and a stability ratio A related stability study was done in Gurevsky
et al (2013) but for the case of an ALB problem where a workstation can have
several workplaces, there are exclusion constraints, and the processing times
of the tasks can vary during the line life cycle.

Chica et al (2013) also defined a set of scenarios and proposed a visual
representation of the optimal solutions to quantitatively measure and repre-
sent how robust the assembly line configuration is on the set of scenarios or
production plans. Papakostas et al (2014) proposed a model for minimizing
time and cost through a set of demand profiles but they used single-objective
particle swarm optimization. Finally, a novel multiobjective genetic algorithm
to find the most robust solutions for TSALBP was proposed in Chica et al
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(2016) where two separated populations of solutions are evolved through the
running of the algorithm.

2.4 Simulation when optimizing under uncertainty

Simulation techniques allow the modeling of complex systems in a natural
way (Nance and Sargent 2002, Gass and Assad 2005). These techniques can be
incorporated into optimization models without a mathematical sophistication
and the computational time typically stays manageable (Lucas et al 2015).
However, simulation is not an optimization tool on its own and simulation
experiments need to be designed in order to gain an understanding of the
models behavior with respect to both decision and probability spaces.

EMO methods can make use of simulation paradigms to be employed when
solving optimization problems under uncertainty (Juan et al 2016, 2015). This
extension of EMO algorithms is oriented to efficiently tackle an optimization
problem involving stochastic components. The stochastic components can be
either located in the objective function (e.g., random customers demands,
random processing times, etc.) or in the set of constraints (e.g., customers
demands that must be satisfied with a given probability, deadlines that must
be met with a given probability, etc.).

Simulation techniques can be considered as a powerful tool to detect and
evaluate those situations where risks could appear and also provide with a
robust optimization solution. Although there are different kinds of simulation,
Monte Carlo simulation has been proved to be useful for obtaining numerical
solutions to complex problems which cannot be efficiently solved by using
analytic approaches (Kroese et al 2014). This kind of simulation is defined
as a set of techniques that make use of random number generation to solve
certain stochastic or deterministic problems. Hence, by using this simulation
approach, a solving method can be naturally extended to consider a different
distribution for each stochastic variable.

Regarding unbalanced assembly lines some authors has used simulation to
investigate them, for example taking into account their operation time means,
coefficients of variation and/or buffer sizes (Shaaban and Hudson 2012). In
the particular case of the TSALP, uncertainty may appear in different parts of
the optimization process such as the uncertain demand of the products (Chica
et al 2013, 2016). Several particular scenarios can be generally stated in order
to test the robustness of solutions. However, we might miss risk situations if
solutions are just tested with a small number of discrete scenarios. Therefore,
simulating a high number of possible scenarios will have a great impact in the
evaluation of how assembly line configurations behave under these conditions.
We could obtain a more realistic measure of robustness by taking into account
a higher number of more diverse risk situations for the set of production plans.
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2.5 Mathematical definition of the r-TSALBP

In this section we will describe a mathematical model for ALB related to the
latter concepts. This is a multiobjective optimization problem which models
uncertainty in the demand and which could be solved by robust optimiza-
tion methods together with/or simulation techniques. The model is called r-
TSALBP and is a multiobjective TSALBP variant which minimizes the num-
ber of stations m and their linear area A (Chica et al 2016).

This model assumes the realistic case where the processing time of a specific
operation is different when an engine is assembled for a truck or a van. If
demand changes and more products with higher processing time requirements
have to be assembled, the workload of the stations will necessary increase.
Therefore, the r-TSALBP model incorporates the flexibility of an assembly
line configuration when demand changes based on a set of real production
plans. These production plans define the demand of a set of mixed products
to be assembled in the line. The goal of this model is to identify the flexibility
of an assembly line configuration for a set of production plans by computing
the overload of each station and production plan using temporal and spatial
functions.

r-TSALBP includes a set I of product types. Thus, being J the set of tasks
to be assembled, a task j ∈ J requires a processing time of tji for assembling
product i ∈ I. r-TSALBP refers Ψ to the set of assembly line configurations
and ψ to a specific line configuration which belongs to the set. The same
applies to the spatial features of the line tasks but, in this paper, we focus
the uncertainty in the temporal feature of the ALB problem. For a complete
mathematical definition of the model see Chica et al (2016).

We define E as the set of realistic production plans to model the demand
variation of the mix of products to be assembled. One of the plans of E is called
the reference production plan, ε0, and ψ0 is its reference line configuration.
Typically, this reference plan ε0 is the one having a balanced demand for the
products of I.

Given a production plan ε ∈ E, defined by a demand vector
−→
d ε = (d1ε, d2ε, ..., d|I|ε),

we can determine the average processing time of task j ∈ J for this plan ε by
Equation 1:

tjε =
1

Dε

|I|∑

i=1

tjidiε, (1)

where Dε is the global demand of plan ε given by Dε =
∑|I|

i=1 diε. In the next
two sub-sections we specifically define the r-TSALBP non-robustness functions
and how to use them as constraints to be used with an optimization method.

2.5.1 Temporal non-robustness functions

The r-TSALBP formulation adds temporal functions to measure the overload
of the workstations and production plans with respect to the cycle time c.
These functions are normalized to [0, 1] and make use of yckε, a binary variable
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being 1 if the processing time required in station k ∈ K for the production
plan ε ∈ E (

∑
j∈Sk

tjε) exceeds the cycle time c, and 0 otherwise. These non-
robustness functions are defined as follows:

– g1c : Rate of overloading production plans (Equation 2).

g1c =
1

|E|

|E|∑

ε=1

max
k∈K

yckε. (2)

– g2c : Rate of overloaded stations with respect to the allowed workload time
(Equation 3).

g2c =
1

m

|K|∑

k=1

max
ε∈E

yckε. (3)

– g3c : Proportion of exceeding processing time of the stations in all the plans
with respect to the maximum exceeding time and number of overloaded
stations (Equation 4).

g3c = g3c (x) =
1

∆c
∑|E|

ε=1

∑|K|
k=1 y

c
kε

|E|∑

ε=1

|K|∑

k=1

(max{0,

|J|∑

j=1

tjεxjk − c}), (4)

where ∆c is the maximum allowable processing time above cycle time for
any workstation at a normal work pace. To ease the decision maker defini-
tion of the model, ∆c is usually defined as ∆c = γcc where γc is a flexibility
control parameter for exceeding cycle time.

2.5.2 Use of the r-TSALBP temporal non-robustness functions as constraints

One way to incorporate the temporal non-robustness functions defined in Sec-
tion 2.5.1 to the r-TSALBP model is to use them as constraints during the
optimization process. In this way, solutions which do not fulfill the temporal
constraints of Equation 5 are not valid (i.e., unfeasible solutions):

g1c ≤ g̃1c ; g
2
c ≤ g̃2c ; g

3
c ≤ g̃3c , (5)

where {g̃1c , g̃
2
c , g̃

3
c} are parameters defined in [0, 1] that restrict the temporal

non-robustness functions (gc). Analogously, we can define the robustness tem-
poral functions as rc = 1− gc. A decision maker could inject their preferences
about her/his desired robustness level by using minimum temporal robustness
parameters r̃1c , r̃

2
c , and r̃

3
c . These parameters define the temporal constraints

of Equation 5 by g̃1c = 1− r̃1c , g̃
2
c = 1− r̃2c , and g̃

3
c = 1− r̃3c . This process can

be seen as an a priori decision making scheme (see Section 2.2).
An illustrative example of the use of this constraint is the following. Let set

the decision-maker robustness preference r̃1c to 0.6 (then, the non-robustness
parameter g̃1c is equal to 0.4). A feasible solution for the r-TSALBP will be a
solution which is robust in the 60% of the production plans (according to the
workload of the stations).
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3 The automotive case study

In this section we describe the case study used in this paper. First, Section 3.1
shows the data collected for the experimentation and later, Section 3.2 de-
scribes the methods and parameters used for running the computational ex-
perience.

3.1 Industrial data description

The cases study involves the data of the engines’ assembly line of the Nissan
Motor Iberica plant, located in Barcelona. This line assembles up to nine dif-
ferent types of engines (P1, P2, ..., P9). Figure 1 shows one of these engines,
the one of the Nissan Pathfinder. The number of elementary tasks for manu-
facturing one engine is 380 but for simplification, those tasks were grouped in
140 operations. All of the engines have different destinations and features. The
first three engines, P1, P2, P3, are for 4x4 vehicles. Engines P4 and P5 are for
vans; and the last four types (P6 − P9) are for commercial trucks of medium
tonnage.

Fig. 1 Nissan Pathfinder engine, assembled in the industrial line of the case study.

Under conditions of demand equilibrium (i.e., equal demand for the all the
engines) and a cycle time of 3 minutes, the line is balanced by 21 workstations
with an average length of 4 meters each. However, the engines’ demand is not
usually homogeneous or identical for the nine types of engines. This fact means
that, although the line maintains a daily production of 270 units, it should be
able to adapt to different production plans based on the partial demands of
each type of engine.

The present case study has a cycle time of c = 180s, which allows to man-
ufacture 270 engines for an effective day of 13.5 hours uniformly distributed
in two shifts. Table 1 shows the most usual 23 demand plans for the company.
Seven of these 23 plans have been selected as the representative demand plans
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Table 1 Units of demand of 23 production plans for the nine engine types (P1, P2, ..., P9)
during a 13.5 hours day divided into two shifts.

Family
4x4 Vans Trucks

Plan P1 P2 P3 P4 P5 P6 P7 P8 P9 Total
1 30 30 30 30 30 30 30 30 30 270
2 30 30 30 45 45 23 23 22 22 270
3 10 10 10 60 60 30 30 30 30 270
4 40 40 40 15 15 30 30 30 30 270
5 40 40 40 60 60 8 8 7 7 270
6 50 50 50 30 30 15 15 15 15 270
7 20 20 20 75 75 15 15 15 15 270
8 20 20 20 30 30 38 38 37 37 270
9 70 70 70 15 15 8 8 7 7 270

10 10 10 10 105 105 8 8 7 7 270
11 10 10 10 15 15 53 53 52 52 270
12 24 23 23 45 45 28 28 27 27 270
13 37 37 36 35 35 23 23 22 22 270
14 37 37 36 45 45 18 18 17 17 270
15 24 23 23 55 55 23 23 22 22 270
16 30 30 30 35 35 28 28 27 27 270
17 30 30 30 55 55 18 18 17 17 270
18 60 60 60 30 30 8 8 7 7 270
19 10 10 10 90 90 15 15 15 15 270
20 20 20 20 15 15 45 45 45 45 270
21 60 60 60 15 15 15 15 15 15 270
22 20 20 20 90 90 8 8 7 7 270
23 10 10 10 30 30 45 45 45 45 270

for a working day: 1, 2, 3, 6, 9, 12, and 18. These seven plans will be used to
search and evaluate the most robust assembly line configuration solutions.

Each of the latter production plans leads to a weighted average process
time for the 140 tasks of the case study. For example, task j = 13 has process-
ing times of 1,620, 1,575, 1,470, 1,350, 1,425, 1,530, 1,500, 1,380, and 1,650cs
for engines from type P1 to P9, respectively. Meanwhile, the corresponding
demands to these engines according to plan number 12 are: 24, 23, 23, 45,
45, 28, 28, 27 and 27 units. Therefore, the weighted average of the process
time for operation j = 13 is 1,483cs in plan 12, in contrast to 1,532cs in plan
9. Appendix C of the supplemental material file shows the weighted process-
ing times of all the 140 assembly operations according to the seven selected
representative plans.

3.2 Experimental setup

3.2.1 Parameters for the optimization methods

In order to obtain the results for the case study we use the r-TSALBP model
defined in Section 2.5 with the seven representative production plans of the
Nissan engine (described in previous Section 3.1). For this case, the reference
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plan ε0 for the r-TSALBP is the one having a balanced demand for all the
products of I (i.e., first plan with 30 products of each type of engine).

The minimum robustness value injected by the decision maker prior to the
search as their preferences are r̃1c = 0.75, r̃2c = 0.9, r̃3c = 0.95. These values
will determine how robust assembly line solutions are and will influence the
final set of non-dominated solutions offered to the decision maker. The allowed
exceeding cycle time for each station is γc = 0.05s.

The experimentation comprises the run of two EMO algorithms to solve
the Nissan case study. The first algorithm is an adaptation of the well-known
NSGA-II (Deb et al 2002) for solving the TSALBP (Chica et al 2011). This
method does not consider uncertainty in the demand and therefore, solves a
traditional ALB problem. The second algorithm is the adaptive IDEA which
was proposed in Chica et al (2016) to solve the r-TSALBP. This extension of
the original IDEA (Singh et al 2008) searches for robust assembly line solutions
by dividing the evolutionary algorithm population in two sub-populations. One
sub-population only includes robust solutions but the other sub-population in-
cludes non-robust solutions to provide the algorithm with a higher diversity.
The number of solutions of both populations change during the run of the algo-
rithm and is adapted depending on the robustness of the set of non-dominated
solutions at every generation. For more information about this robust EMO
please refer to Chica et al (2016).

The parameters of both EMO algorithms are the following. The stopping
criterion is 300 seconds. Both algorithms use a population size pop = 100
individuals, a crossover probability pc = 0.8, and a mutation probability pm =
0.1. In the specific case of the adaptive IDEA, the unfeasibility ratio αI is
set to 0.2 and the Pareto robustness ratio ∆r is set to 0.5 after running a
preliminary experimentation. Also, both algorithms were run 15 times with
different random seeds setting the run time as the stopping criterion. All the
algorithms were launched in the same computer: Intel XeonTM E5530 with
two CPUs at 2.40GHz, 3.7 Gbytes of memory, and Scientific Linux 6.4 as
operating system and we use the same framework and programming language
(C++) for the development of the algorithms.

3.2.2 Simulation method

Additionally, we run a Monte Carlo simulation process to evaluate the uncer-
tainty response in the tasks’ processing time. Thanks to the use of this simu-
lation technique, a deeper analysis can be done. Monte Carlo simulation was
chosen to perform this process because of its simplicity and appropriateness for
evaluating a set of artificially generated demand plans. The simulation process
is fast and allows us to calculate the robustness metrics for a large number of
scenarios. Therefore, risk evaluations with a high number of engines combina-
tions are possible by always considering that the total number of assembled
engines per day is 270.

The Monte Carlo simulation is built by using the 23 productions plans
defined in Table 1 of Section 3.1. We use a triangular probability distribution
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Fig. 2 Pareto front with different assembly line configurations for the same Nissan instance
solved by the adaptive IDEA.

to represent the behavior of the processing times of each engine Pi. This tri-
angular distribution is depicted by the maximum, minimum, and average for
each product in the 23 production plans. We have chosen the triangular dis-
tribution as it provides a simple and realistic representation of the probability
distribution when sample data is limited, as in our case, and there is no need
for a high number of parameters for the distribution.

Once the probability distribution to represent the behavior of the process-
ing times of each engine is obtained, we can generate a high number of random
demands for all of them and create a set of thousands of production plans to
evaluate the robustness of the assembly line configurations. We will show and
analyze the results of this simulation approach in Section 4.3.

4 Experimental results

This section explains the considered computational experiments to study the
robustness of the assembly lines under scenarios of uncertain products’ de-
mand. First, six different assembly line configurations are selected from the
results of two EMO algorithms. Later, some experiments are performed by
considering seven Nissan production plans to evaluate the robustness of the
six configurations. Finally, we show how a simulation technique is used as a
tool to intensively use thousands of plans and compare the robustness metrics
obtained for the six assembly line configurations.

4.1 Obtaining a set of non-dominated solutions for the assembly line

We obtain a set of non-dominated solutions for the two r-TSALBP objectives
by using the two EMO algorithms. Figure 2 shows different non-dominated



14

solutions obtained using the adaptive IDEA algorithm. These non-dominated
solutions are possible configurations, with a minimum level of robustness for
the decision maker. All of them are equally preferable as they minimize both
conflicting objectives, number of stations m and their linear area A, with
different values.

For studying the impact and analyzing the managerial insights of selecting
different assembly line configurations, three of these non-dominated solutions
are selected from the set of assembly line configurations. These solutions trade
one objective off for the other (number of stations and linear area). The first
one corresponds to a 18-stations assembly line which needs a linear area of
5.5 meters (ζ1 with m = 18 and A = 5.5); the second one corresponds to a
21-stations assembly line which requires a linear area of 4.5 meters (ζ2 with
m = 21 and A = 4.5); and the third one corresponds to a 23-stations assembly
line which needs a linear area of 4 meters (ζ3 with m = 23 and A = 4).

Tables 2 and 3 show two line configurations both having 23 stations and
4 meters of linear area. These two configuration lines were respectively ob-
tained by a standard multiobjective method (ζN3 ), and a robust multiobjec-
tive method, adaptive IDEA (ζR3 ). As already explained, the adaptive IDEA
incorporates mechanisms to address robustness through temporal constraints.
Similar tables for the 18-stations solutions (ζN1 and ζR1 ) and 21-stations solu-
tions (ζN2 and ζR2 ) are shown in Appendix A of the supplemental material.

Table 2 Assembly configuration line with objectives m = 23 and A = 4 (ζN
3
) found by a

standard (non-robust) multiobjective method, NSGA-II.

k j ∈ Sk

1 1 9 10
2 3 4 5 7 8 11
3 6 13 14 16 18
4 12 15 17 19 20
5 21 22 23 24 26 27
6 25 28 29 30
7 31 32 33 34 35 36 37
8 38 39 40 41 42
9 43 44 45 49 59 60
10 46 47 48 50 51 52 53 54
11 55 56 57 58 61 62 63 64 65
12 2 66 67
13 68 69 70 71 72
14 73 74 75 76 77
15 78 79 80 81 82 83 86
16 84 85 87 88 89 90 91 92 94
17 93 95 98 99 100 101 102
18 103 104 105 106 108 109 110 111 112 113 114 115
19 107 116 117 118 119 120
20 121 131 132 134 135
21 97 122 128 136 137 138 139
22 123 124 125 126 127 129 130
23 96 133 140
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Table 3 Assembly configuration line with objectives m = 23 and A = 4 (ζR
3
) found by a

robust multiobjective algorithm, adaptive IDEA.

k j ∈ Sk

1 1 9 10
2 3 5 7 8 11 13
3 4 6 14 15
4 16 17 20
5 12 18 19 21 22 26 27
6 23 24 25 28 29 30
7 31 32 33 34 35 36
8 2 37 38 39 40
9 41 42 43 44
10 45 46 47 48 49 50 51 59 60
11 52 53 54 55 56
12 57 58 61 62 63 64 66
13 65 67 68 69 71 72
14 70 73 74 75 79
15 76 77 78 80 81 82
16 83 84 85 86 87 88 89 90
17 91 92 94 98 99 100
18 95 101 102 103 104 105 106 107 108 109 110 111
19 93 112 113 114 115 116 117 118
20 119 120 121 122 123 124
21 125 126 128 131 132 134
22 127 129 130 135 136 137 138
23 96 97 133 139 140

4.2 Robustness evaluation using the Nissan production plans

As mentioned before, seven plans (1, 2, 3, 6, 9, 12, and 18) have been selected
from Table 1 as representative demand plans for a working day. Using these
plans we can test the behavior of the assembly line configurations. Tables 4 and
5 show the workload of the 23 stations for the two line configurations ζN3 and
ζR3 , provided by the non-robust and robust EMO algorithms. In these tables
we can see the stations’ workload for the seven selected plans in each of the
columns. Also, the last two columns show the overload times and the maximum
exceeding time for all the stations k ∈ K (i.e., ∆c). Again, similar tables of
the 18-stations and 21-stations assembly line configurations are available in
Appendix B of the supplemental material of this paper.

We can see that, for solution ζN3 found by the non-robust EMO algorithm
(Table 4), 3 of the 23 workstations (11, 17, and 18) need more processing time
than the available cycle time (i.e., 180s) to assemble the 270 engines in some
of the plans considered. It means that these stations are overloaded when the
demand plans are not the one of reference. However, this is not happening for
solution ζR3 , given by the robust adaptive IDEA method (Table 5). With this
robust method, all the stations can support the uncertainty defined by the
different production plans and therefore, the assembly line is not overloaded
by different task processing times. We have similar results for the other two
assembly line configurations ζ1 and ζ2 with 18 and 21 stations, respectively.
In these two cases (see supplemental material file), the standard EMO algo-
rithm provides assembly line solutions where the stations are overloaded more
frequently than the configuration found by the robust multiobjective method.
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Table 4 Stations workload and overloaded values for each production plan of the line configuration (ζN
3
) with 23 stations and 4 meters, obtained

with a non-robust EMO algorithm (note that ∆c = max{0, t(Sk)− c}).

k tplan1(Sk) tplan2(Sk) tplan3(Sk) tplan6(Sk) tplan9(Sk) tplan12(Sk) tplan18(Sk)
∑

ǫ y
c
kǫ

∆c

1 110 109.58 108.95 110.24 110.87 109.5 110.35 0 0
2 170 169.53 169.14 169.98 170.37 169.54 169.94 0 0
3 133 132.78 131.39 134.14 135.53 132.43 134.72 0 0
4 113 112.99 113.19 112.80 112.6 113.03 112.7 0 0
5 59 59.10 58.92 59.25 59.43 59.01 59.39 0 0
6 85 85.18 85.81 84.55 83.92 85.33 84.32 0 0
7 110 109.93 109.65 110.27 110.54 109.84 110.37 0 0
8 90 89.83 90.58 89.06 88.3 90.15 88.6 0 0
9 95 94.93 94.42 95.44 95.95 94.79 95.66 0 0
10 175 175.64 175.78 175.47 175.33 175.5 175.72 0 0
11 180 180.41 182.8 177.95 175.51 181.09 176.93 3 2.85
12 100 99.83 99.82 99.84 99.86 99.91 99.77 0 0
13 120 119.64 119.74 119.52 119.42 119.8 119.29 0 0
14 100 100.12 99.55 100.73 101.31 99.86 101.08 0 0
15 105 105 105.51 104.5 103.99 105.15 104.25 0 0
16 165 165.05 165.13 164.99 164.91 165.07 164.97 0 0
17 180 179.39 178.17 180.68 181.91 179.13 180.99 3 1.91
18 180 179.88 179.23 180.53 181.18 179.69 180.8 3 1.18
19 140 139.79 139.57 140.01 140.23 139.77 140.01 0 0
20 145 145.17 144.58 145.78 146.37 144.94 146.16 0 0
21 140 139.78 139.81 139.76 139.72 139.85 139.63 0 0
22 140 139.84 140.1 139.58 139.33 139.99 139.38 0 0
23 155 156.16 157.28 154.96 153.83 156.23 154.97 0 0
cmax 180.00 180.41 182.85 180.68 181.91 181.09 180.99 182.85
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Table 5 Stations workload and overloaded values for each production plan of the line configuration (ζR
3
) with 23 stations and 4 meters, obtained

with a robust EMO algorithm (note that ∆c = max{0, t(Sk)− c}).

k tplan1(Sk) tplan2(Sk) tplan3(Sk) tplan6(Sk) tplan9(Sk) tplan12(Sk) tplan18(Sk)
∑

ǫ y
c
kǫ

∆c

1 110 109.58 108.95 110.24 110.87 109.5 110.35 0 0
2 125 124.49 124.75 124.26 124 124.74 123.87 0 0
3 138 138.19 136.43 139.96 141.71 137.55 140.93 0 0
4 93 92.86 92.96 92.76 92.66 92.91 92.64 0 0
5 82 81.72 81.23 82.19 82.68 81.67 82.30 0 0
6 122 122.32 123.08 121.54 120.79 122.46 121.33 0 0
7 95 94.89 94.76 95.07 95.20 94.87 95.08 0 0
8 105 105.06 105.29 104.84 104.61 105.13 104.75 0 0
9 115 114.68 115.05 114.29 113.93 114.94 113.95 0 0
10 170 170.54 170.84 170.27 169.97 170.46 170.39 0 0
11 90 89.97 89.58 90.34 90.73 89.87 90.52 0 0
12 155 155.57 157.88 153.25 150.95 156.15 152.39 0 0
13 110 109.73 109.96 109.5 109.27 109.91 109.25 0 0
14 120 119.59 118.61 120.6 121.58 119.36 120.88 0 0
15 70 70.45 70.79 70.12 69.78 70.40 70.17 0 0
16 160 159.93 160.37 159.51 159.07 160.11 159.26 0 0
17 170 169.19 168.56 169.91 170.54 169.2 169.82 0 0
18 170 170.46 169.76 171.15 171.86 170.07 171.73 0 0
19 165 164.63 163.96 165.31 165.98 164.51 165.46 0 0
20 125 124.61 124.16 125.05 125.49 124.59 125.07 0 0
21 160 160.07 160.57 159.61 159.11 160.23 159.4 0 0
22 165 164.91 164.56 165.24 165.59 164.83 165.37 0 0
23 175 176.08 177.06 175.02 174.04 176.13 175.07 0 0
cmax 175 176.08 177.06 175.02 174.04 176.13 175.07 177.06
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Table 6 Metric values for the six assembly configuration lines.

ζ1, (18, 5.5) ζ2, (21, 4.5) ζ3, (23, 4)
Non-robust Robust Non-robust Robust Non-robust Robust

Metrics ζN

1
ζR

1
ζN

2
ζR

2
ζN

3
ζR

3

g1

c
(r1

c
) 1 (0) 0 1 (0) 0.17 (0.83) 1 (0) 0 (1)

g2

c
(r2

c
) 0.22 (0.78) 0 (1) 0.24 (0.76) 0.05 (0.95) 0.13 (0.87) 0 (1)

g3

c
(r3

c
) 0.09 (0.91) 0 (1) 0.09 (0.91) 0.02 (0.98) 0.13 (0.87) 0 (1)

Table 6 shows the corresponding robustness metric values for the found
assembly line configurations. These metrics g1c , g

2
c , g

3
c , and r

1
c , r

2
c , r

3
c summa-

rize the non-robustness and robustness of the line configurations, respectively.
They are useful for a decision maker as they provide information about how
flexible the configuration is and the possible managerial impact of adopting
one or another solution. We will discuss the managerial impact related to these
metric values in next Section 5.

The rows of Table 6 show, for each of the three non-dominated solutions,
the number of stations and linear area needed (m,A) as well as the three
metric values for the configurations given by the non-robust and robust EMO
algorithms. In light of this table, we can state that:

– For ζN1 (i.e., the 18-stations assembly line configuration given by the stan-
dard EMO algorithm), the rate of overloaded production plans with respect
to the allowed workload time g1c is 1. It means that 100% of plans overload,
at least, one station. On the contrary, the robust EMO algorithm provides
with a configuration ζR1 which is not overloaded in any of the stations. The
second robustness metric gc2 indicates that the number of overloaded sta-
tions with respect to the allowed workload time is not very high (i.e., 22%)
for the configuration given by the standard EMO algorithm, although this
metric value is lower for the configuration given by the robust adaptive
IDEA (i.e., 0%). Finally, the third robustness metric gc3, which shows the
exceeding processing time for all the workstations, is 9% for the configu-
ration ζN1 given by the standard EMO algorithm. In contrast, this value
drops to 0% in the solution ζR1 given by the robust EMO algorithm.

– Metric values corresponding to the 21-stations assembly line configuration
ζN2 given by the standard EMO algorithm are very similar to the ones
obtained for the 18-stations configuration with the same algorithm. On
the other hand, the solution obtained with the robust EMO algorithm is
less robust than the corresponding 18-stations assembly line, but still those
metric values lead to confirm that the robustness of the solution is higher
than the obtained by the standard algorithm. Decision makers can still
use this additional information when choosing the best solution for the
company.

– For ζ3, the 23-stations assembly line configuration, we see that the robust
method can get again a totally robust configuration. Metric values for the
non-robust configuration ζN3 are similar than in the 18-stations configu-
rations. All the plans overload at least one workstation (metric g1c ), 13%
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Table 7 Metric values for the six assembly configuration lines for the Monte Carlo simulated
production plans.

ζ1, (18, 5.5) ζ2, (21, 4.5) ζ3, (23, 4)
Non-robust Robust Non-robust Robust Non-robust Robust

Metrics ζN
1

ζR
1

ζN
2

ζR
2

ζN
3

ζR
3

g1c (r
1
c ) 0.96 (0.04) 0.41 (0.59) 0.99 (0.01) 0.30 (0.70) 0.95 (0.05) 0 (1)

g2c (r
2
c ) 0.28 (0.73) 0.11 (0.89) 0.24 (0.76) 0.05 (0.95) 0.13 (0.87) 0 (1)

g3c (r
3
c ) 0.01 (0.99) 0.01 (0.99) 0.02 (0.98) 0.01 (0.99) 0.02 (0.98) 0 (1)

of the workstations are overloaded at least in one plan (gc2), and the ex-
ceeding processing time of the stations is almost the 13% of the maximum
exceeding time of the overloaded stations (metric gc3).

4.3 Extending the set of production plans through simulation

In the previous experimentation, seven representative demand plans (plans 1,
2, 3, 6, 9, 12, and 18 from Table 1) were taken into account for running evalu-
ating the robustness in the proposed EMO algorithms. Simulation techniques
can help to extend the evaluation of the flexibility of the assembly line config-
urations by using a higher number of demand plans instead of using a small
number of them.

Figure 3 shows how the stations are overloaded when simulating 1,000
production plans with different engines’ demands. The box-plot shows the
results for the six assembly line solutions of 18, 21, and 23 stations (ζ1, ζ2,
and ζ3) when obtained by non-robust (ζN ) and robust (ζR) EMO algorithms.
This box-plot allows us to visually identify the solutions that present a more
flexible behavior when evaluating the risk of having a diverse and high number
of production plans. The red line of the box-plot sets the available cycle time
c of the assembly line to better visualize what configurations are always below
this level.

Additionally, Table 7 provides the robustness metric values g1c , g
2
c , g

3
c , r

1
c ,

r2c , and r3c obtained after evaluating all the simulated production plans. We
can compare these metric values with respect to the previous ones, obtained
without simulation and only the discrete set of seven plans. The analysis of
these results can arise the following insights:

– The robustness of the 18-stations assembly line configuration given by the
non-robust EMO algorithm ζN1 is similar than the one obtained using the
discrete set of seven plans. However, metrics obtained for the configuration
given by the robust EMO algorithm ζR1 indicate that the flexibility of this
configuration is lower and therefore, less robust when a higher number of
more diverse plans are considered by means of the Monte Carlo simulation.
Nevertheless, taking into account the g1c metric value, there is a significant
number of plans which exceed the cycle time but just a few workstations
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Fig. 3 Overloaded time of the workstations for the six assembly line configurations using
a Monte Carlo simulation to generate 1,000 different production plans.

of the assembly line are affected (g2c metric) and when so, by just a low
exceeding workload time (g3c metric).

– Both 21-stations assembly line configurations ζ2 show approximately the
same behavior than the 18-stations ones. That is, the robustness of the
configuration given by the non-robust EMO algorithm ζN2 remains simi-
lar when a large number of plans, obtained by a Monte Carlo simulation
is performed. However, the robustness of the configuration given by the
robust EMO algorithm ζR2 seems to get worse robustness as the number
of production plans that overload the the cycle time of the workstations
increases.

– Finally, for the assembly line configuration with 23 stations ζ3, both robust
and non-robust configurations have similar metric values as when using the
discrete set of seven production plans.

5 Final discussion and concluding remarks

Changing the demand of the products to be assembled can generate dishar-
mony between the required work (planning department) and the capacity of
the assembly line (production department). These differences need changes in
the production system of the company and can disrupt the production of the
required items to customers. When the global demand varies with respect to
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the reference plan, there are some adverse effects on the production line. The
main effects for the global demand changes are the next two:

– An increase of the number of workstations in order to satisfy the new
production plans when we have higher global demands than expected.

– The reduction of workers when the global demand decreases and then, dead
periods can arise in the assembly line.

The latter two effects require, with respect to the managerial impact of
the production system, significant changes in the production system. Clearly,
an increase in the number of workstations needs hiring more workers for the
assembly line and also, as a reassignment to new workers is necessary, a training
phase for them is required during several weeks with a consequent reduction in
the number of products assembled by the company (i.e., the productivity of the
automotive company). The second effect, i.e., the workers’ reduction, can be
considered easier to manage. This is true from the technological point of view.
However, from the human resources point of view, these re-adjustments are
more complex: processing the new allocations, training the unskilled workers
towards a more multi-tasking work, and also having a new line configuration.

There are also possible negative effects in the workstations and production
line when global demand does not change but there are changes in the produc-
tion mix with respect to the one considered when balancing the line (reference
plan):

– Increase/decrease of the number of workplaces to satisfy the temporal re-
strictions of the assembly line while keeping the total cycle time and linear
area required for the workstations.

– A clear modification of the workload of the stations (minimum in two of
them) by keeping the number of workplaces, cycle time, and linear area
required for the assembly line.

The latter first effect has managerial consequences, similar to the first
two effects. If the global demand is unchanged, the temporal attributes of
the processing tasks for all the types of products are similar, and then, the
new situation will have slight differences with respect to the initial one. But
here again, workers will need to be re-trained in accordance to the tasks and
associated workstations. The measurements of these workers’ health and work
conditions must support strategic and long-term operational cost-saving plans
such as reduced or shifted work-force size or different allocated working hours.

All the latter effects and damaging managerial consequences for the pro-
duction line and company itself can be alleviated by using our proposed multi-
objective robust models. Our case study from the Nissan assembly line showed
how our robust TSALBP model, EMO algorithms, and simulation techniques
can help the decision maker to find flexible assembly line configurations which
have less risk when the demand of the products changes. With our model
and methods, it is possible to propose various optimal and robust assembly
line configurations (i.e., non-dominated solutions). And additionally, we can
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measure the flexibility of all the solutions with respect to a reference line
configuration.

This is done through robustness metrics applied to an assembly line con-
figuration with respect to a set of demand plans (E). We understand these
robustness metrics as the capacity of the assembly line configuration to ab-
sorb the possible demand variations in the set of products to be assembled
in the same assembly line (I). Therefore, an assembly line configuration is
more robust when less changes are needed to adapt the line to new incoming
demand scenarios.

Multiobjective optimization methods as those based on EMO offer the
decision maker a set of equally-preferable alternative solutions. Also, EMO al-
gorithms offer a manager a set of equally-preferred solutions for the assembly
line and these solutions can be restricted by injecting decision maker prefer-
ences prior to the search. For the Nissan case study, three different assembly
line configurations were selected from the Pareto front resulted from the opti-
mization process: ζ1 with 18 stations of 5.5 meters, ζ2 with 21 stations of 4.5
meters, and ζ3 with 23 stations of 4 meters. These three solutions present dif-
ferent objective values for the decision maker. We obtained and analyzed in the
experimentation two options for each one: ζR with a robust EMO algorithm
and ζN without it.

We explored the values for the non-robustness metrics gc1, g
c
2, and g

c
3 and

robustness metrics rc1, r
c
2, and rc3 for the latter six solutions. These metrics

show different information about the flexibility of the solutions in terms of
overloaded stations by a set of production plans. The use of simulation tech-
niques helped us to provide more certainty about when a solution is robust as
we will be able to compute these metrics in a higher number of future scenar-
ios. We showed that a way of improving the risk evaluation of the assembly
line configuration is by means of simulation approaches. Thanks to the Monte
Carlo simulation, the values of the robustness metrics are calculated by taking
into account a high number of simulated demand plans. In our experiments
we first used a discrete set of plans and later enriched the robust approach by
generating 1,000 different demand plans in order to evaluate the robustness of
the six selected assembly configurations.

The r-TSALBP model and its use of temporal robustness functions as opti-
mization constraint can offer managers a set of non-dominated solutions which
can deal with high levels of uncertainty in the demand plans. The robustness
achievement of the solutions with respect to these metrics provides information
about the kind of managerial actions to apply when adopting the specific line
configuration. For instance, we observed that, using the simulated extended
set of plans, non-robust solution ζN1 would have overloading problems in 27%
of the workstations (gc2), and an exceeding workload of the 1.3% of the maxi-
mum exceeding time (gc3). A solution with 23 stations found by a non-robust
EMO algorithm, ζN3 , will also be overloaded in the 13% (metrics gc2 and r2c ),
and by almost all the demand plans in, at least, one workstation (metrics gc1
and rc1).
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The provided robust assembly line configuration ζR3 was totally robust with
respect to the defined set of demand plans and the 1,000 simulation plans. It
means that no changes will probably be needed when the current demand
changes. Solutions ζR1 and ζR2 (i.e., those having 21 stations and 4.5 meters of
linear area for the stations) did not obtain a full robustness value in the given
demand plans but much lower metric values gc1, g

c
2, and g

c
3 were obtained than

in the case of a standard non-robust model and EMO algorithm.
These robust models and built decision support system for assembly lines

are useful when the assembly lines are for mixed products and the attributes of
the tasks are based on averaged industrial measures such as averaged process-
ing time. Although there are more external implications for the organization,
the proposed flexibility information provides with the number of interventions
on the assembly line when the demand changes and therefore, the temporal
processing features of the tasks of the assembly line. The metrics alert about
potential re-adjustments that would cause additional works to be re-scheduled
in other shifts or during the weekends. These changes may cause production
inefficiencies until achieving the regular capacity of the line. These issues are
related with the possible actions of the human resources department. As com-
mented by Eynan and Dong (2012), the process design and capacity invest-
ment cannot be just a strategic decisions without considering the effect of the
weekly (or daily) decisions such as model mix planning (sequencing) which is
the concern of tactical planning.

Additionally, detecting which workstations are the least flexible is useful to
find the most problematic workstations if demand changes. Our first proposed
metric gc1 for instance, shows workstations that, under the conditions of the
reference line configuration, need more cycle time to fulfill all the set or simu-
lated production plans. Manufacturing process management technologies can
offer the following solutions to solve this issue (Chica et al 2016): a) improve
the processing time of the industrial tasks, b) request alternative pieces having
less processing time during their assembly (product design department), and
c) set a working pace over the normal activity of the line (Bautista et al 2015)
within the legal and trade union agreements (process engineering).

Nevertheless, the proposed model and given results have limitations. For
instance, the r-TSALBP model and its managerial relevance do not apply when
we have a production system that is process-oriented. Also, these results are
limited when the industry needs to assemble extremely similar models or the
demand is constant. In general, this contribution is not relevant for industries
where changes in the assembly line do not require important changes and they
can be easily made.

Future works may focus on adding the current robust EMO algorithms
and models with more realistic industrial features such as ergonomic fac-
tors (Bautista et al 2016). Furthermore, and although we have considered
uncertain demand in our case study, the use of more advanced simulation-
optimization approaches such as simheuristics (Juan et al 2016) could promote
the integration of simulation techniques within the optimization procedure.
Additionally, visualization processes to enhance the decision making process
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are, in our opinion, another important and promising line in the area. First
attempts to support the ALB decision maker with network visualization have
been recently done in Trawinski et al (2016).
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